Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type

§ 2.2 Mathematical Expectation
§ 2.3 Special Mathematical Expectation
§ 2.4 The Binomial Distribution
§ 2.5 The Hypergeometric Distribution
§ 2.6 The Negative Binomial Distribution
§ 2.7 The Poisson Distribution

Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type
§ 2.2 Mathematical Expectation
§ 2.3 Special Mathematical Expectation
§ 2.4 The Binomial Distribution
§ 2.5 The Hypergeometric Distribution
§ 2.6 The Negative Binomial Distribution
§ 2.7 The Poisson Distribution

Let the random variable X denote the number of trials needed to observe the r th success in a sequence of independent Bernoulli trials. That is, X is the trial number on which the r th success is observed.

By the multiplication rule of probabilities, the pmf of X-say, $g(x)$ - equals the product of the probability

$$
\binom{x-1}{r-1} p^{r-1}(1-p)^{x-r}=\binom{x-1}{r-1} p^{r-1} q^{x-r}
$$

of obtaining exactly $r-1$ successes in the first $x-1$ trials and the probability p of success on the r th trial. Thus, the pmf of X is

$$
g(x)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r}=\binom{x-1}{r-1} p^{r} q^{x-r}, \quad x=r, r+1, \cdots .
$$

We say that X has a negative binomial distribution with parameter (r, p).

Remark 2.6-1 The reason for calling this distribution the negative binomial distribution is as follows:

Consider $h(w)=(1-w)^{-r}$, the binomial $(1-w)$ with the negative exponent $-r$. Using Maclaurin's series expansion, we have

$$
(1-w)^{-r}=\sum_{k=0}^{\infty} \frac{h^{(k)}(0)}{k!} w^{k}=\sum_{k=0}^{\infty}\binom{r+k-1}{r-1} w^{k}, \quad-1<w<1 .
$$

If we let $x=k+r$ in the summation, then $k=x-r$ and

$$
(1-w)^{-r}=\sum_{x=r}^{\infty}\binom{r+x-r-1}{r-1} w^{x-r}=\sum_{x=r}^{\infty}\binom{x-1}{r-1} w^{x-r}
$$

the summand of which is, expect for the factor p^{r}, the negative binomial probability when $w=q$. In particular, the sum of the probabilities for the negative binomial distribution is 1 because

$$
\sum_{x=r}^{\infty} g(x)=\sum_{x=r}^{\infty}\binom{x-1}{r-1} p^{r} q^{x-r}=p^{r}(1-q)^{-r}=1
$$

The case $r=1$

If $r=1$ in the negative binomial distribution, we note that X has a geometric distribution, since the pmf consists of the term of a geometric series, namely,

$$
g(x)=p(1-p)^{x}, \quad x=1,2,3, \cdots
$$

Remark 2.6-2 Recall that for a geometric, the sum is given by

$$
\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r} \quad \text { when }|r|<1
$$

Thus, for the geometric distribution,

$$
\sum_{x=1}^{\infty} g(x)=\sum_{x=1}^{\infty}(1-p)^{x-1} p=\frac{p}{1-(1-p)}=1
$$

so that $g(x)$ does satisfy the properties of a pmf.

From the sum of a geometric series, we also note that when k is an integer,

$$
\mathbb{P}(X>k)=\sum_{x=k+1}^{\infty}(1-p)^{x-1} p=\frac{(1-p)^{k} p}{1-(1-p)}=(1-p)^{k}=q^{k}
$$

Thus, the value of the cdf at a positive integer k is

$$
\mathbb{P}(X \leq k)=\sum_{x=1}^{k}(1-p)^{x-1} p=1-P(X>k)=1-q^{k}
$$

General case $r \geq 1$

Theorem 2.6-1 Let X follow a negative binomial distribution with parameters (r, p). Then

$$
\mathbb{E}(X)=\frac{r}{p} \quad \text { and } \quad \operatorname{Var}(X)=\frac{r q}{p}, \quad \text { where } q=1-p
$$

This theorem is proved by the following example.

Example 2.6-1 Show that the moment generating function of negative binomial random variable X is

$$
M(t)=\frac{\left(p e^{t}\right)^{r}}{\left[1-(1-p) e^{t}\right]^{r}}, \quad \text { where } t<-\ln (1-p)
$$

Example 2.6-2 Suppose that a sequence of independent tosses are made with a coin for which the probability of obtaining a head on each given toss is $1 / 30$.
(a) What is the expected number of tosses that will be required in order to obtain five heads?

Example 2.6-2 Suppose that a sequence of independent tosses are made with a coin for which the probability of obtaining a head on each given toss is $1 / 30$.
(b) What is the variance of the number of tosses that will be required in order to obtain five heads?

Remark 2.6-3 Recall that when the moment-generating function exists, derivatives of all orders exist at $t=0$. Thus, it is possible to represent $M(t)$ as a Maclaurin's series, namely,

$$
M(t)=M(0)+M^{\prime}(0)\left(\frac{t}{1!}\right)+M^{\prime \prime}(0)\left(\frac{t^{2}}{2!}\right)+M^{\prime \prime \prime}(0)\left(\frac{t^{3}}{3!}\right)+\cdots
$$

Here, $M^{(k)}(0)$ gives the k-th moment.
On the other hand, in many cases, knowing all moments can help us determine the underlying r.v. or distribution.

Example 2.6-3 Let $\mathbb{E}\left(X^{r}\right)=5^{r}, r=1,2,3, \cdots$. Find the moment-generating function $M(t)$ of X and the pmf of X.

Example 2.6-4 Consider the experiment of throwing a fair dice.
(a) Find the probability that it will take less than six tosses to throw a 6.

Example 2.6-4 Consider the experiment of throwing a fair dice.
(b) Find the probability that it will take more than six tosses to throw a 6.

Example 2.6-4 Consider the experiment of throwing a fair dice.
(c) Find the average number of rolls required in order to obtain a 6.

Exercises form textbook: Section 2.6: 1, 2, 3, 4, 6, 7, 8.

